Molecular mechanism of peptide editing in the tapasin–MHC I complex
نویسندگان
چکیده
Immune recognition of infected or malignantly transformed cells relies on antigenic peptides exposed at the cell surface by major histocompatibility complex class I (MHC I) molecules. Selection and loading of peptides onto MHC I is orchestrated by the peptide-loading complex (PLC), a multiprotein assembly whose structure has not yet been resolved. Tapasin, a central component of the PLC, stabilises MHC I and catalyses the exchange of low-affinity against high-affinity, immunodominant peptides. Up to now, the molecular basis of this peptide editing mechanism remained elusive. Here, using all-atom molecular dynamics (MD) simulations, we unravel the atomic details of how tapasin and antigen peptides act on the MHC I binding groove. Force distribution analysis reveals an intriguing molecular tug-of-war mechanism: only high-affinity peptides can exert sufficiently large forces to close the binding groove, thus overcoming the opposite forces exerted by tapasin to open it. Tapasin therefore accelerates the release of low-affinity peptides until a high-affinity antigen binds, promoting subsequent PLC break-down. Fluctuation and entropy analyses show how tapasin chaperones MHC I by stabilising it in a peptide-receptive conformation. Our results explain previous experiments and mark a key step towards a better understanding of adaptive immunity.
منابع مشابه
Redox-regulated export of the major histocompatibility complex class I-peptide complexes from the endoplasmic reticulum.
In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled M...
متن کاملInteraction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing.
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I...
متن کاملMolecular architecture of the MHC I peptide-loading complex: one tapasin molecule is essential and sufficient for antigen processing.
The loading of antigen-derived peptides onto MHC class I molecules for presentation to cytotoxic T cells is a key process in adaptive immune defense. Loading of MHC I is achieved by a sophisticated machinery, the peptide-loading complex (PLC), which is organized around the transporter associated with antigen processing (TAP) with the help of several auxiliary proteins. As an essential adapter p...
متن کاملCritical role for the tapasin-docking site of TAP2 in the functional integrity of the MHC class I-peptide-loading complex.
The transporter associated with Ag processing (TAP) translocates antigenic peptides into the endoplasmic reticulum for binding onto MHC class I (MHC I) molecules. Tapasin organizes a peptide-loading complex (PLC) by recruiting MHC I and accessory chaperones to the N-terminal regions (N domains) of the TAP subunits TAP1 and TAP2. To investigate the function of the tapasin-docking sites of TAP in...
متن کاملMolecular architecture of the TAP-associated MHC class I peptide-loading complex.
Tapasin organizes the peptide-loading complex (PLC) by recruiting peptide-receptive MHC class I (MHC-I) and accessory chaperones to the N-terminal regions of the TAP subunits TAP1 and TAP2. Despite numerous studies have shown that the formation of the PLC is essential to facilitate proper MHC-I loading, the molecular architecture of this complex is still highly controversial. We studied the sto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016